
i281 CPU: sddec22-20

1

i281 CPU: sddec22-20

Table of Contents
Introduction 3

Project Context 3

Team Members and Contributions 4

Project Plan 4

Intended Users 5

Functional Requirements 5

Non-Functional Requirements 5

Project Milestones 6

Technical Standards 6

Bill of Materials 7

Individual Module Implementations 8
ALU Module 8
Program Counter 11
Register File 13
Control Logic 16
2 to 1 Bus Multiplexer 17
Data Memory 19
Instruction Memory 22
Boot Sequence 24

EEPROM Programming 26

Combined Implementation 26
Datasheets 27

Project Evolution 27

Testing Process 27

Testing Results 29

Conclusion 29

Appendix I – “Operation Manual” 30

2

i281 CPU: sddec22-20

Introduction
The College of Electrical and Computer Engineering at Iowa State offers programs that

help its students learn about and work with different types of hardware and software. However,
Iowa State and many other universities around the country lack material that can effectively
build a connection between hardware and software with undergraduate students. Professor
Alexander Stoytchev seeked to bridge that gap by developing an easily understandable hardware
implementation of a simple computer processor known as the i281 CPU. This senior design
project aimed to prove that the design worked by using breadboards to implement each
subcomponent of the computer and resolve any issues that were discovered.

Project Context
When this project was proposed, two projects had already implemented different

variations of the i281 CPU. Professor Stoytchev had originally developed an FPGA variation of
this CPU with his graduated TA, Kyung-Tae Kim. They introduced this iteration of the CPU in
the Fall of 2019 for Professor Stoytchev’s CprE 281 class to examine at the end of the semester.
The idea behind this was to link all the information taught throughout the class into a real-world
applicable example. While this provided a chance for students to examine the capabilities of the
CPU when loaded onto an FPGA, it was not visual enough to provide a good example of how
programs were executing on the underlying circuitry.

This led to the senior design project of fall 2020/spring 2021, where the i281 CPU was
implemented as a simulator attached to Professor Stoytchev’s CprE 281 website. This simulator
proved to be a good tool for visualizing the CPU. However, it was not a tangible representation
of the CPU that students could examine in real life, which led to the proposal for our senior
design project. The idea, this time, would be to have both a visual and tangible representation of
the CPU for students to examine, ideally bridging the gap between software and hardware in the
computer engineering curriculum.

3

i281 CPU: sddec22-20

Team Members and Contributions

Team Member Role in Project Major Contribution

Alex Kiefer Hardware Lead Datapath Implementation

Joseph De Jong Administrative Lead Documentation

Saffron Edwards Software Lead Website

Patrick O’Brien Hardware Design Module Designs

David Vachlon Interface Design EEPROM Software

Project Plan
The initial plan for this senior design project was to directly implement the i281 CPU, as shown
in the FPGA design, using discrete THT chips. To do this, we planned to implement the CPU in
a modular fashion. This was because by developing each module independently, we could test
each smaller module more easily, and ideally that should lead to us being able to simply connect
all modules. As our requirements changed, though, we ended up having to implement more than
just the initially planned i281 CPU. We had to add a user interface as well as a display system for
users to see output, and hardware to boot up this system. This increased complexity caused our
initial project plan to have to expand to incorporate this newly expanded scope. We will outline
this modular implementation in the following sections, as well as our design challenges.

4

i281 CPU: sddec22-20

Intended Users
Dr. Stoytchev and his students would ideally benefit from the eventual successful

implementation of this project. This is because this will be used to enhance the learning
experience of future undergrads in the ECpE program here at Iowa State.

Additionally, the eventual success of this project will hopefully cause more students to
feel they have mastered the material, which should help them in future courses. It is because of
this that Professor Stoytchev pursues better implementations of his CPU to better serve his
students education.

This project, when fully functional, will be used in the lab setting of CprE 281 to teach
students how the different aspects of digital logic that they have learned all semester coalesce
into a single, functional computing unit. They will interact with it by running programs through
it, examining the output, and identifying the different components comprising this computing
system.

Functional Requirements
● Able to run all instructions in the instruction set architecture (ISA). This includes general

register instructions, immediate operations, and branches and jumps.
● DIP and SPDT switches must be used as user inputs to the CPU.
● Seven segment displays and LEDs must be used to visualize information propagating

through the CPU.
● The design must include a variable speed clock for normal operations and a manual clock

to step through operations.
● The CPU must be reprogrammable.

Non-Functional Requirements
● The final project must be easy to visualize, allowing users to see where data flows in the

CPU.
● Must function similarly to the previous versions of the i281 CPU, including the software

simulation and FPGA implementation.
● The CPU must be easy to reproduce, allowing for mid-level manufacturing.

5

i281 CPU: sddec22-20

Project Milestones

Milestones Stretch Goals

Design and build all subcomponents (ALU,
Register File, Memory, Displays, Program
Counter, Opcode Decoder)

Create PCB modules

Connect every subcomponent to create a
datapath

Create PCB design based on the breadboard
CPU

Test the datapath for basic functionality and
continuity

Review and order PCB prototypes

Test datapath for functionality with PONG
and Bubble Sort

Solder PCBs, combine and test for system
bugs

Technical Standards
IEEE Standards:
1012-2016 - IEEE Standard for System, Software, and Hardware Verification and Validation: We
determined that we needed this standard to assist us in testing the hardware that we built as well
as Professor Stoytchev’s ISA (instruction set architecture) on this CPU. Building hardware via
breadboards is a complex and difficult task, so this requirement was important in producing a
working implementation.

162-1963 - IEEE Standard Definitions of Terms for Electronic Digital Computers: We needed
this standard to ensure that the PCB we build for students uses the correct names for its
components. Because this will be used in a learning environment, it must be properly labeled so
the students can more easily understand it.

6

i281 CPU: sddec22-20

Bill of Materials
We compiled a list of all the materials needed to complete the breadboard implementation

of the i281 CPU. We found an estimated cost for the entire project was greater than $1200. This
was greater than our initial cost estimates, but a fair amount of the high cost was due to the
worldwide chip shortage. Specialized chips that were necessary to complete the project while
following our client's specifications would normally cost around $4 per chip, but the chip
shortage caused those chip costs to jump into the $20-30 price range. Additional costs for the
project included the used breadboards, power supplies, and shipping costs.

Cost Estimate of Breadboard Implementation:

7

i281 CPU: sddec22-20

Individual Module Implementations

ALU Module

The ALU module is a component in the i281 CPU which performs all of the necessary
computations needed in arithmetic instructions. It can perform 4 different operations, including
addition, subtraction, shift left by 1, and shift right by 1.

Parts List:

Schematic:
Inputs:

● X [7:0]

● Y [7:0]

● ALU Select 1

● ALU Select 0

Outputs:
● Overflow Flag

● Carry Flag

● Negative Flag

● Zero Flag

● Result [7:0]

8

i281 CPU: sddec22-20

9

i281 CPU: sddec22-20

10

i281 CPU: sddec22-20

Program Counter

The program counter is a clock-based parallel read/write register. Data is stored as a 7-bit
value and is updated every clock cycle. By default, the PC increments by one every clock.
However, during a jump or branch instruction, the PC value can be incremented to the desired
value.

Parts List:

Schematic:

Inputs:
● Previous PC [6:0]
● IMEM [6:0]
● C2

Outputs:
● PC [6:0]

11

i281 CPU: sddec22-20

12

i281 CPU: sddec22-20

Register File

The Register File module takes in 8 bits of data (D) and stores them in one of 4 registers
on every high edge of the clock pulse (synchronous write). Control bits (C8 -C9) decide which of
the four registers to store the data. The data is then chosen by the 4-1 read port muxes controlled
by (C4-C7) asynchronously. Other CPU modules can use the output data.

Parts List:

Schematic:
Inputs:

● 8 Input data bits (D)
● 2 Write Address bits (C8-C9)
● Write Enable (C10)
● 8 bit read port A (C4-C5)
● 8 bit read port B (C6-C7)

Outputs:
● 8-bit data from the two read ports

(R1, R2)

13

i281 CPU: sddec22-20

14

i281 CPU: sddec22-20

15

i281 CPU: sddec22-20

Control Logic

Parts List:

Schematic:
Inputs:

● Switches

● IMEM Addresses

Outputs:
● CPU Control Signals

16

i281 CPU: sddec22-20

2 to 1 Bus Multiplexer
The multiplexer is used as a data select. The i281 CPU uses 8-bit and 16-bit multiplexers.

The multiplexers have two buses for data input and a single select bit. The select bit is selected
via the manual control switches or the opcode decoder.

Parts List:

Schematic:
Inputs:

● Input A [N:0]
● Input B [N:0]
● Select

Outputs:
● Data [N:0]

17

i281 CPU: sddec22-20

18

i281 CPU: sddec22-20

Data Memory
The data memory is used to store data during runtime. The four read/write address bits

are received from mux C15. The 8 data bits are received from mux C16. The eight output bits are
sent to the graphics processor and C18. The DMEM and graphics processor are combined as a
single unit when creating the schematics and breadboards. The graphics processor displays data
stored in the eight least significant addresses of the data memory. Data and addresses are shared
between the DMEM and graphics processor, allowing both components to update
simultaneously.

Parts List:

Schematic:

Inputs:
● Read/Write Select [3:0]
● Data Input [7:0]

Outputs:
● Data Output [7:0]

19

i281 CPU: sddec22-20

20

i281 CPU: sddec22-20

21

i281 CPU: sddec22-20

Instruction Memory

The Instruction Memory is a 128-address x 16-bit memory. Addresses 0 to 63 contain the
BIOS information stored on EEPROM chips. The BIOS data is used to prepare the CPU for
execution. The BIOS calls the BOOT and waits for execution to complete. After the boot process
has been completed, the Instruction Memory enters addresses 64 to 127. The data in these
addresses are stored on the SRAM chips. These addresses are used during runtime to execute a
program on the CPU. The SRAM and EEPROM output are sent to a set of muxes. The mux
outputs EEPROM data when the PC MSB is 0 and SRAM data when 1.

Parts List:

Schematic:

Inputs:
● PC [6:0]
● Boot Data [15:0]
● Write

Outputs:
● Data [15:0]

22

i281 CPU: sddec22-20

23

i281 CPU: sddec22-20

Boot Sequence
The Boot module is used to initialize data in the static memory on the CPU. During

startup, the BIOS calls boot requesting data to fill the register file, DMEM, and the lower 64
addresses of the IMEM. Data can be programmed onto the Boot EEPROMs or 16 switches that
can manually add data.

Parts List:

Schematic:
Inputs:

● PC [6:0]
● C0 [1]

Outputs:
● Data [15:0]

24

i281 CPU: sddec22-20

25

i281 CPU: sddec22-20

EEPROM Programming
To test the final implementation of this CPU, we had to program the EEPROMs with test

values. To do this, a java program was developed to convert programs written in hexadecimal
values–that directly correlated to the assembly language Professor Stoytchev wrote–to a version
of Intel Hex. This was done to program our EEPROMs since we bought an XGecu programmer,
which required a special version of intel hex to load our programs onto the programmer's
associated software. However, this programmer didn’t work for every one of our EEPROMs, so
we additionally had to develop an Arduino programmer attached to a breadboard to program our
remaining EEPROMs. To use this programmer, we no longer needed the java files to convert to
intel hex, but we did need to divide our hex files into segments that could be individually loaded
onto the Arduino. Ultimately, we could load various test programs onto the EEPROMs, allowing
us to do limited testing of our CPU.

Combined Implementation
After creating and testing each module individually, we combined them to create a single

datapath. Modules can be connected in three ways. First, modules can be connected through a
bus. Whenever a module receives data from a single location, we can use a bus to transport data.
However, if a module receives data from multiple locations, the second method is to use a mux
to select between the data received. The most commonly used size mux is an 8-bit 2-to-1 mux.
However, 4-to-1 muxes and 16-bit 2-to-1 muxes are used as needed. Finally, the third method to
connect modules is to use a tri-state buffer. A tri-state buffer is used when data needs to be sent
only one directionally. This is rarely used but is needed in locations where chips have shared I/O
pins, such as the CXK58256 SRAM, AT28C256 EEPROM, and the AT28C16 EEPROM.

When we combined all required modules, a common power, ground, clock, and reset was
implemented to be shared throughout all modules. The breadboard implementation handles the
common power and ground through the side rails on the breadboards. The reset and clock are
shared through a loop that sends data to each module.

26

i281 CPU: sddec22-20

Datasheets
74LS04: Hex Inverter
74LS10: 3 Input Nand
74LS32: Quad 2 Input Or
74LS86: Quad 2 Input Xor
74LS139: 2-4 Decoder
74LS153: 4-1 Multiplexer
74LS154: 4-16 Decoder
74LS157: 2-1 Multiplexer

74LS173: 4 Bit Register
74LS245: Octal Transceiver
74LS283: 4 Bit Adder
74LS377: 8 Bit Register
AT28C16: 11 Address EEPROM
AT28C256: 15 Address EEPROM
CXK58256: SRAM
LM555: 555 Timer

Project Evolution
During the first semester of senior design, our team’s goal was to implement the i281

CPU on breadboards and create a working PCB implementation. We planned to finish a working
breadboard implementation by the end of the first semester. This would give us the second
semester to create PCB designs, purchase PCBs, and solder the required chips. However, our
team was unable to follow this schedule.

At the end of the first semester, we had only completed a handful of the breadboard
implementations and were not ready to move on to PCB design. We met with our client to
rewrite our milestones to set the breadboard implementation as the final project goal. Our team
worked diligently during the second semester to stay on track with our deadlines. After the CPU
was fully implemented, we found many bugs. We changed our design to reduce errors and
redesigned the CPU to a hardware-friendlier version. The various design changes are noted in the
individual modules section of the report.

Testing Process
There were multiple subsystems of the CPU, including the data memory, register file,

ALU, instruction memory, and control logic. Each CPU subsystem was tested individually using
dip switches to emulate data from the register file/instruction memory. We tested these by setting
the switches to a specific value and observing the LED indicators on the unit's output (tools
include oscilloscopes, multimeters, and LED indicators). This was the most concrete way to test
our project because we already knew what outputs to expect, so it was a matter of verifying that
our breadboard builds matched our expectations.

27

https://www.futurlec.com/74LS/74LS04.shtml
https://www.futurlec.com/74LS/74LS10.shtml
https://www.futurlec.com/74LS/74LS10.shtml
https://www.futurlec.com/74LS/74LS86.shtml
https://www.futurlec.com/74LS/74LS139.shtml
https://www.futurlec.com/74LS/74LS153.shtml
https://www.futurlec.com/74LS/74LS154pr.shtml
https://www.jameco.com/Jameco/Products/ProdDS/301612-DS01.pdf
https://pdf1.alldatasheet.com/datasheet-pdf/view/27388/TI/74LS173.html
https://www.futurlec.com/74LS/74LS245.shtml
https://www.futurlec.com/74LS/74LS283.shtml
https://www.futurlec.com/74LS/74LS377.shtml
http://cva.stanford.edu/classes/cs99s/datasheets/at28c16.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/doc0006.pdf
https://pdf1.alldatasheet.com/datasheet-pdf/view/101650/SONY/CXK58256.html
https://www.ti.com/lit/ds/symlink/lm555.pdf

i281 CPU: sddec22-20

Our interface was switches, LEDs, 7-segment displays, and the text interface used to
write the assembly. First, the LEDs and switches were tested by programming our instruction
memory with basic instructions to ensure the correct LED values. Next, the 7-segment displays
were tested to ensure the proper hexadecimal values were outputted with the correct input.

All CPU subsystems (ALU, Register File, Instruction memory, data memory, and control
logic) were integrated after they were completed. They were slowly integrated to make a basic
data path that could add instructions. After the first datapath was completed, more capabilities
were added to support more and more of our instructions. The testing initially consisted of
creating a basic datapath and checking the LED indicators to ensure correct data flow. When
errors occurred, we used multimeters and oscilloscopes to debug problems.

As each component was critical to the success of the project as a whole, we tried to
ensure that our testing was incredibly thorough when attempting to find any issues. While our
initial tests of the modules looked positive, combining the modules together proved to be
somewhat of an issue. Wiring all of the bus routes, as well as the connections between our
interface switches, quickly got messy and complicated. While our previous testing methods were
utilized to attempt to find issues as they arose, such as shorts from missed placed wires, we were
never able to come up with a testing method that could easily catch those issues. Additionally,
while our testing process could verify the functionality of individual modules, wires slipping out
of place during transport of the units between our locker and our workstation quickly created an
escalating problem where finding those issues began to take more and more of our time. While
we were ultimately unsuccessful in solving all of these issues, we did gain valuable insight into
test engineering and how the complexity of testing scales as a project does.

28

i281 CPU: sddec22-20

Testing Results
The testing results informed us that our project had more bugs than we could realistically

handle in the time we left. While we used these results to fix as many issues with our design as
possible, ultimately, our results informed us of the simple fact that not all issues with this project
could be solved.

Engineering Constraints
There are many constraints for our project, however, we will list the most significant ones

here. The first and our main constraint was that we had to match the software implementation.
This meant that all the modules and connections on the software simulation had to be the same
on the hardware implementation. Another major constraint was that the processors needed to be
visually understandable to students, which, created an issue as LEDs have significant power
requirements when using a lot of them. Another significant constraint was that the CPU needed
to be able to run the entire Stoytchev ISA (Instruction Set Architecture), which was a massive
logistical undertaking when we were already dealing with wiring issues. A final constraint for
our team was simply the supply chain issues that plagued the tech industry during and following
the pandemic. This resulted in us not always being able to get the exact parts we wanted for our
implementation. While those were alleviated during our second semester, it was too late to
change to many of the components we had initially wanted since most of our modules had been
built by that point.

Conclusion
The overall objective of our project was to create a breadboard implementation of the

i281 CPU that closely follows the original i281 FPGA design. However, due to the nature of the
hardware devices, we were required to modify the original design. These design changes
required a strong understanding of the i281 CPU and the effects of the change.

Throughout the two semesters of this project, we got the wonderful opportunity to learn
and grow as engineers. Our team’s largest learning outcome is the importance of documentation.
We found that bugs always occur, and minimal documentation makes solving these bugs near
impossible. However, as the semester progressed, so did our documentation skills. We ended the
semester with a well-documented project and the ability to fix bugs quickly.

Our team worked continuously to reach our defined objectives. However, in the end, we
could not reach our final goal and run the i281 CPU using PONG and Bubble Sort. We believe
that the knowledge and skills we learned throughout this class outweigh this missed objective,
and we hope to see this passed on to another team for further completion and improvement.

29

i281 CPU: sddec22-20

Appendix I – “Operation Manual”

In order to set up our senior design project:

1. One must first set up our breadboard implementation carefully on a stable surface.
2. Then, one must attach the connector to our power supply in order to connect to the board

3. After attaching the connector, one must connect both the red wire to a positive (+) row
and the black wire to a negative (-) row on any open area of the breadboard. This will
provide enough power for the CPU to function fully.

4. Next, the CPU will be powered on, and the user can utilize our controls to activate the
test programs on our CPU.

Note: One needs to be extremely careful not to knock out any wires on our project when picking
it up and transferring it to the designated test station. Should any wires be knocked out of place,
the CPU will have to be tested extensively to determine where a wire is loose. This will
additionally consist of then consulting the manual of the chip that the wire is supposed to be
connected to determine where the wire needs to be placed.

In order to test our senior design project:

1. One must turn on the CPU and determine which program will be run for testing.
a. Should a new program wish to be tested, the user will have to study Professor

Stoychevs assembly language to write the desired program. Reference materials
are provided in the form of the .java files that were written to allow writing to the

30

i281 CPU: sddec22-20

EEPROMs in this project. This will allow a user to reference already written
programs that are meant to be able to run on this CPU.

2. Next, one must study the program execution LEDs and make their way around the board
following the path outlined in our design diagram.

a. If the clock setting is too high, it will be impossible for the user to trace the
program execution, so the user will have to locate the clock module and use the
potentiometer on that module to adjust to a traceable speed.

3. Due to issues with the video card module, the user will not be able to determine if the
CPU is outputting the proper values. However, by utilizing the numerous LEDs that show
what each module of our CPU is doing, the user can manually determine if the expected
values are appearing at different modules, during execution, to determine the
functionality of the CPU.

Note: Should any issues be encountered in testing the execution of the program, this means a
wire has likely come loose. In that case, one will, at the very least, need multimeters to test and
identify where the wire is loose in order to fix the problem.

In order to demo this CPU:
1. One must follow similar steps as with the testing of the CPU.
2. However, one must also provide an accurate account of what the expected values are for

the output of the program that they are running.
3. This can be achieved by referencing Professor Stoytchevs assembly language explanation

slides on his website, available at this link.
4. Then, one must manually trace out the expended hex and binary values expected at each

step of the program.
5. Finally, one can demonstrate through observation of the onboard LEDs that the CPU is

executing the program according to expectation.

31

https://home.engineering.iastate.edu/alexs/classes/2021_Fall_281/slides_PDF/

